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Abstract. Organizations increasingly depend on Building Automation
and Control Systems (BACSs) to support their daily tasks and to com-
ply with laws and regulations. However, BACSs are prone to disruptions
caused by failures or active attacks. Given the role BACSs play in critical
locations such as airports and hospitals, a comprehensive impact assess-
ment methodology is required that estimates the effect of unavailable
components in the system. In this paper, we present the foundations
of the first impact assessment methodology for BACSs focused on busi-
ness continuity. At the core of our methodology, we introduce a novel
graph centrality measure called BACRank. We quantify the contribu-
tion of BACS components to different business activities. Moreover, we
take functional dependencies among components into account to estimate
indirect consequences throughout the infrastructure. We show the prac-
tical applicability of our approach on a real BACS deployed at a 5-story
building hosting 375 employees on an international university campus.
The experimental evaluation confirms that the proposed methodology
successfully prioritizes the most relevant components of the system with
respect to the business continuity perspective.

1 Introduction

Operational Technology (OT), and specifically Building Automation and Con-
trol Systems (BACSs), are steadily increasing in number and complexity [18].
Many organizations depend on BACSs to comply with laws and regulations
required to operate [3-5]. Thus, the dependability of BACSs is crucial for their
daily operation. However, complex systems with extended uptimes are prone to
occasional outages due to failures or active attacks.

Unavailable BACS components have direct consequences on the services they
are part of, and indirect consequences that can spread throughout neighboring
components that rely on them to execute their functions. Knowing the impact
of unavailable BACS components help organizations to better prepare and react
upon those undesired events. From the preventive perspective, they can compute
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incident probabilities and obtain risk estimations (Risk = Impact x Probability).
Risks are then used as an input to establish contingency plans and to decide on
improvement strategies. On the other hand, the increasing interest in monitor-
ing tools for BACSs might lead to an overwhelming number of alerts that must
be managed by building administrators [11,12]. In this regard, from the reac-
tive perspective, the impact measurement can be used to prioritize failure and
security alerts, which helps to efficiently allocate resources to solve the problems.

Measuring the impact of unavailable IT components is a well understood
problem [13]. Tt is not clear, however, how to implement impact assessments for
OT systems like BACSs, that extend beyond the cyber domain to the physical
world. From the security perspective, the situation degenerates considering that
most of the reported attacks on OT systems target their availability [1]. Although
in principle, BACSs could be assessed using business continuity methodologies,
the peculiarities of BACSs must be taken into consideration to develop a com-
prehensive impact assessment in this domain.

1.1 Related Work

Impact assessments focus on diverse target goals ranging from environmental to
economical impact, physical damage, and business continuity, just to mention a
few examples [6,8,13,17,20]. ISO 27031 describes a consolidated methodology to
perform impact assessments in the I'T domain focused on business continuity [13].
The analyzed assets are typically devices such as PCs, switches, and servers.
Those assets are linked to one or more pre-scored business activities in order
to assign them the highest score among the related activities. The outcome is
a ranking of IT assets prioritized with respect to the relevance of the business
activities they participate in.

OT, on the other hand, lacks the maturity level of standardized methodolo-
gies for impact assessments. To fill this gap, a number of academic works have
been proposed, mostly for Industrial Control Systems (ICSs) [6,8,20]. These
works are based on the observation of cause-and-effect relations between data
points representing sensors and actuators. The observations are taken from sim-
ulated environments where changes are induced to log the corresponding effects.
Knowing the limits of the physical process (e.g., what is the threshold before
the power plant explodes?), data points with the higher potential to reach those
limits are prioritized.

The only work that is focused on BACSs prioritizes component categories
rather than individual assets [23]. They automatically analyze work orders
describing building’s routine and maintenance operations. Based on the infor-
mation recorded in the work orders, such as location, problem description, and
priority, they rank equipment categories like “fans”, “valves”, “pumps”, etc.

The approach presented in this paper aims to adapt previous works to the
context of BACSs and to solve practical limitations that hinder their implemen-
tation in real BACSs. Our impact assessment is focused on business continuwity
as it is commonly done for IT systems. Nonetheless, our assets are not physical
devices since we consider this approach too coarse grained. Neither are individual
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data points, as in the ICS prototypes, since such fine grained analysis might suf-
fer from scalability problems in real-life systems. We chose software modules as
a middle ground generic abstraction that provides a suitable granularity level.
Instead of measuring the propagation effect via cause-and-effect experiments,
unlikely to be allowed in real BACS deployments, we use functional dependen-
cies among the software modules. Finally, although many software modules could
be clustered by functional similarity, we acknowledge that the role they play for
different business activities makes a crucial difference. Thus, we reference and
prioritize software modules individually.

1.2 Contribution

We present the first impact assessment methodology for BACSs focused on busi-
ness continuity. We adapt and integrate standard business continuity methodolo-
gies from the IT domain, and combine them with software analysis techniques.
From the IT domain, we follow the standard procedures used to score business
activities. After mapping software modules with business activities, we use the
activities’ score to derive the related modules’ score. From the software engineer-
ing domain, we implement a module dependency analysis that aims to estimate
the propagation effect of unavailable modules.

Our impact assessment methodology models BACS software modules as ver-
tices in a graph data structure where the edges represent functional dependencies
among modules. A quantitative measurement of a node’s relevance in a graph is
called a node’s centrality and it is computed by means of graph centrality mea-
sures [25]. Our impact assessment methodology formally defines the requirements
such centrality measure must satisfy in order to quantify the software modules’
impact. Additionally, we implement an instance of such centrality measure and
we call it BACRank. BACRank scores software modules in a dependency graph
according to their relevance from the business continuity perspective. Our notion
of “relevant” includes those software modules that are: (1) needed by core busi-
ness processes; and (2) needed by other relevant modules.

Finally, we evaluate BACRank in a real-world BACS deployed at a 5-story
office building hosting 375 employees on an international university campus. The
underlying BACS graph is comprised of 160 software modules and 412 module
dependencies. Such evaluation confirms that BACRank prioritizes relevant soft-
ware modules according to the defined relevance notion.

2 Building Automation and Control Systems

Modern buildings provide more than a physical space to their occupants. Envi-
ronmental conditions are controlled by heating, cooling, and ventilation systems.
Indoor transportation of goods and people is done through escalators, elevators,
and travelators. Other services like CCTV, alarms, and physical access control
are also common. Control engineers implement those services and many more
in Building Automation and Control Systems (BACSs). BACSs offer function-
ality that brings comfort and convenience to the users while unified control and
energy efficiency engage building managers.



186 H. Esquivel-Vargas et al.

In BACSs, IT networking infrastructure is used to interconnect all the sub-
systems in a building [19]. We distinguish three levels in the typical BACS archi-
tecture as shown in Fig. 1. The management level provides monitoring and con-
trol functions to building administrators. The automation level is comprised of
embedded systems called BACS controllers that implement the logic behind the
building services. BACS controllers receive inputs from the environment through
sensors, execute the appropriate logic, and send outputs back to the environment
using actuators. Both sensors and actuators are the elements found in the field
level. Dashed lines around field level components denote that software modules
at the automation level are linking them. Building services are comprised of one
or more—possibly interacting—software modules.

Management level g_'_g

Automation leve I |

L8 &g iea:

Fig. 1. Three-layer architecture of IT networks supporting BACSs.

Organizations typically have specific needs from their BACS. Deciding which
building services are to be implemented depends on the organization’s purpose.
For example, the building services required in a hospital are quite different from
the services required in an office building. Thus, let us start with a brief discus-
sion on the role that BACSs play in organizations.

Organizations Requirements. All organizations have a goal to pursue. Non-
trivial goals require a divide-and-conquer approach that splits the task at hand
into smaller activities. The attainment of the organization’s goal depends on the
success of the individual activities. In what follows, we refer to those activities
as business processes.

Business processes make use of diverse resources like people, supplies, and
assets. Buildings are one of those resources, and fostering business processes
became the main task of BACSs. BACSs, just as other technological projects
like software systems, are the answer to specific business process needs. While
some of those needs are nice-to-have features (perhaps comfort oriented), others
constitute necessities that must be fulfilled [3-5]. In what follows we will refer
to the former type of building services as supporting services and to the latter
as enabling services.
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Building Services Dependability. Building services, and particularly enabling
services, must be dependable. Dependability involves, among others, concepts
such as privacy of the data, message integrity, and in general the availability
of the system, meaning that it behaves as it was designed and provides timely
responses [15,21].

Previous research has identified availability as the most important feature
in diverse OT systems such as smart-grids and Industrial Control Systems
(ICS) [9,16,24]. This conclusion seems to match the trend of real-life attacks
on OT systems, typically oriented towards Denial-of-Service [1]. ISO standard
27031 also recognizes the role that OT systems play in business continuity by
adding an annex on “High availability embedded systems” [13]. Although an
impact assessment could be tailored to any of the aforementioned dependability
factors, we focus on the availability of building services, their underlying software
modules, and the supported business processes.

3 System Model and Information Requirements

We consider mature organizations and critical buildings whose dependence on
BACSs is crucial for their daily operations. Such organizations have undergone—
or are willing to apply—business continuity methodologies like those proposed in
ISO standards 22301 and 27031. Although an ISO certification is not required,
critical buildings such as hospitals and airports are typically demanded to
implement business continuity methodologies like those described in the stan-
dards [10,22].

On the technical side, our approach is independent of the BACS protocol in
use and the underlying communication methods. We consider standard BACSs
comprised of sensors and actuators connected to BACS controllers, which contain
the logic behind the smart building, as in Fig. 1.

To implement a comprehensive BACS impact assessment focused on busi-
ness continuity, technical and business aspects must be taken into consideration.
First, it is required to make explicit the relation between BACS services and
business activities. We propose to do so by considering their physical overlap in
the building. Two views of the building layout are needed: one segregated by
business processes and the other segregated by the area of influence of the build-
ing services. We put the two views of the building layout on top of each other
to unveil the mapping. Moreover, we need to quantify the support of building
services on the related business processes. The quantification can be expressed
as a percentage where 100% means that the service in question is an enabling
service, whereas lower values characterize supporting services (see Sect. 2).

The second aspect is to know which business activities are critical for the
organization, so we can map such criticality status to the corresponding BACS
services. Business activity priorities can be found in business continuity plans,
where the activity scores are calculated by means of a procedure called Business
Impact Analysis (BIA). The main purpose of the BIA is to score each business
process based on questionnaires answered by process managers. The idea is to



188 H. Esquivel-Vargas et al.

estimate the impact of a business process halted during different time ranges
(e.g., 0-2 h, 2-8 h, etc.), considering diverse impacts like customer service, legal,
financial, and reputation. The managers assign a severity level to each impact of
the processes they are in charge of. Finally, the average level score is computed
for all processes to determine their relevance with respect to the organization’s
goal. For further details on the BIA, we refer the reader to the ISO standards
22301 and 27031 [13,14]. In summary, the BIA lists all business processes, their
relevance scores according to the business perspective, and a calendar that spec-
ifies their execution period.

Finally, the third aspect lies on the technical side. It is important to know
when the building services are actually needed since they might not be relevant
out of their duty periods (e.g., the heating service during summer). Further-
more, it is crucial to understand how the building services are implemented to
find possible design flaws that could lead to availability issues (e.g., single points
of failure). To obtain this information, we assume access to the BACS design
documentation to identify (1) all building services, (2) their duty cycles, (3) the
underlying software modules, and (4) the functional dependencies among mod-
ules. Since some dependencies might be stronger than others, a quantification is
needed in this regard. We propose a percentage value as a simple mechanism to
denote the dependence strength, where 100% means that the dependent module
cannot operate without the other.

Table 1 summarizes the information requirements. While most of the infor-
mation is typically already available in mature and critical organizations, we
emphasize three components where an expert’s judgment is required: (1) the
building services’ support on business processes; (2) the software modules’ depen-
dency strength; and (3) the building services calendar. It is worth noting that,
if needed, an individual module’s calendar can be derived from the calendar of
the building service it belongs to.

Table 1. Information requirements summary. Expert-based information shown in
italics.

Business Information BACS Technical Information
Business continuity plan Engineering design
L BIA l, Building services list
l, Business process list L Calendar
L Score L, Software modules
l, Calendar l, Dependencies
L Strength
Building layout Building layout
l, Segregated by business processes l, Segregated by building services

b Building services support on the overlapping business processes 4
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The parameters described in this section provide the basic input that allows
us to account for the impact, in terms of availability, of business processes sup-
ported by building services comprised of software modules. Those parameters
are not only highly meaningful for the purpose of an impact assessment, but are
typically already present in critical organizations. Thus, reducing the effort of
implementing the methodology proposed in this paper. We do not discard, how-
ever, that other business or technical aspects could be included to complement
or replace some elements in the proposed list, while the core principles of our
methodology prevail.

4 Impact Assessment Methodology

We abstract the BACS as a directed graph data structure where software mod-
ules are represented by vertices and their functional dependencies are the edges.
The edge direction denotes the way information flows and its weight represents
the dependency strength. Formally, the BACS is defined as a graph G(V, E)
where V' is a nonempty set of vertices (or nodes) and F is a set of edges. Each
edge has exactly two vertices in V' as endpoints since self-dependencies (i.e.,
loops) are implicit for all modules. An edge e € E is represented as e, , where
u and v denote the origin and the destination of the edge, respectively. Edge
weights are represented as a function w: E — [0, 1] that assigns each edge e € E
a weight w(e). The set of edges with destination m € V is defined as '~ (m)
and the set of vertex origins in I'"(m) is N~ (m). Analogously, the set of edges
with origin m is defined as I'"(m) and the set of vertex destinations in T'F(m)
is NT(m).

We aim to measure the impact of BACS software modules based on their
relevance to the availability of business processes and their functional depen-
dencies with other modules. The identification of important vertices in a graph
is done by means of graph centrality metrics. Therefore, our impact assessment
methodology can be modeled as a graph centrality measure.

We propose a graph centrality measure comprised of two parts. First, a set
up procedure that assigns vertices an initial score based on the BIA score of the
related business processes and the module’s support to those business processes.
Second, a graph centrality measure that contemplates the propagation effect of
unavailable modules. Module’s rank positions are based on their final impact
scores. The next sections detail both parts.

4.1 Initial Score

Notation. The set of business processes running in the building is defined as P =
{p1,...,pn}- The set of building services offered is defined as S = {s1, ..., $; }. The
BIA score assigned to each business process is defined as a function 5: P — [0, 1],
where ((p;) for any p; € P is proportional to p;’s relevance for the organization.
Given an arbitrary s; € S and p; € P, the estimated support s; provides to p;
is defined as a function v: S x P — [0, 1], where higher values denote stronger
support. Since building services are comprised of one or more software modules,
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we can formally state that s; € V for any s; € S. For an arbitrary module
m € V that is part of service s; € S, the support m provides to an arbitrary
pr € P is given by v(s;,px). Finally, we define a time function that takes two
inputs: (1) the object whose calendar is going to be inspected (either a business
process or a software module); and (2) the current time ¢. The output is binary
and indicates whether the object given as first input is running/needed or not
at time t, denoted by a 1 or a 0, respectively.

Initial Score. The initial score given to each software module in the graph,
labels vertices with a numerical value that summarizes three important aspects:
(1) the relevance of the related business processes represented by function 3; (2)
the module’s support to each business process represented by function ~y; and
(3) the time in which both, the business process is running and the software
module is needed (according to its building service calendar).

To determine the influence that module m € V has over each business pro-
cess, we multiply G(p;) - v(s;,pi) for all p; € P, given that m is part of s; € S.
Computing the initial score for module m at time ¢, denoted d(m,t), consists
of taking the maximum influence found among active business processes, given
that module m is also active at time ¢. Formally,

1) — { M3 A(s5,p0) i time(pi, 1) = time(m 1) =1,
’ 0 otherwise.

4.2 Graph Centrality Measure

We propose to estimate the propagation effect of unavailable modules by means
of a graph centrality measure. Before describing the requirements for such cen-
trality measure we introduce some definitions.

Definition (Module equivalence). Two modules my,ms € V are equivalent
(at time t) (denoted as m; = my) if all of the following properties hold:

N*(my) = NT(my) (1)
N~ (m1) =N~ (m2) (2)
Vemym € TT(m1), emym € TT(m2) : w(em,m) = w(€myn) (3)
Ven,m, €7 (m1), enm, € I (M2) : w(en,m,) = w(en,ms) (4)
6(7711, t) = 5(m2, t) (5)

Definition (Module equivalence with exception). Two modules my, msy €
V' are called equivalent with exception if at least one of the above equivalence
properties is violated. In this case, we explicitly mention the exception and
denote this as my =, mqo (exception).

In what follows we define three basic requirements that a centrality measure
A(m,t) for module m at time ¢, must satisfy to quantify the impact of BACS
software modules.
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1. For any two active modules one of which, ceteris paribus, has higher initial
score, must score higher.

The aim of the first requirement is to ensure that the impact score difference
of two modules with identical topological features in the graph is determined by
their initial score. Formally described in Eq. 6, for all active modules my, ms:

my = ma (6(my,t) > 6(ma,t)) = A(ma, t) > A(ma,t) (6)

2. For any two active modules one of which, ceteris paribus, sends information
to an active module with higher impact score than its counterpart, must score
higher.

The goal of the second requirement is to acknowledge that feedback plays
an important role in software module dependency graphs. Unlike web central-
ity measures, where the feedback contribution comes from a node’s incoming
edges [7], software modules in our setting get their contribution from the mod-
ules they send information to. The rationale being that the receiving modules
depend on that input to execute their functions. Formally described in Eq. 7, for
all active modules m1, ms:

my = mg (Ing € NT(my),na € Nt(ma) : NT(my)\{n1} = NT(ma)\{n2} A
W(emy ny) = W(€my,ny) A A(N1,1) > A(ng, t)) = A(ma,t) > A(me,t) (7)

3. For any two active modules one of which, ceteris paribus, sends information
to an active module with stronger dependency than its counterpart, must score
higher.

The purpose of the third requirement is to emphasize that the link strength
regulates the fraction of the impact score to be transferred from the destination
vertex to the source vertex. Formally described in Eq. 8, for all active modules
mi,ma:

my =, mg (3 € Nt (my) = NT(my) : w(emyn') > w(lmyn)) =
A(my,t) > A(ma,t) (8)

4.3 BACRank

Taking into account the requirements stated before, we define a new graph cen-
trality measure called BACRank. The BACRank score of vertex m at time ¢,
is computed as its initial score §(m,t) plus a contribution from the vertices m
points to. From those vertices, m will get a percentage of their BACRank score
determined by the strength of the link, represented by w(ey, ). This mechanism
boosts the scores of vertices that are highly important from the technical and
business process availability standpoint. The algorithm is defined as

d(m,t), at iteration ¢ = 0,

BACRank(m, ;i) =
ankm 60 {5(m,t) + ZneN+(m) BACRank(n, t;4 — 1) - w(em,n), for i > 0.
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To keep BACRank scores bounded, all scores are normalized in the range
[0,1] after every iteration. The algorithm is said to converge if for all vertices
the score difference in two consecutive iterations is less than a small value €. An
empirical convergence proof is provided in Sect. 5 as shown in Fig.4. The final
score, simply denoted as BACRank(m,t) by leaving out the iteration count 4,
is then iteratively computed until iteration ¢ such that the difference between
BACRank(m, t;i) and BACRank(m,¢;i¢ — 1) is smaller than e.

Figure2 shows a simple BACRank execution example. At iteration 0, in
Fig. 2a, the BACRank score of software modules z and y is their corresponding
initial score §, in this example setting equals 0.35 and 0.50, respectively. At
iteration 1, in Fig. 2b, module z has increased its BACRank score by 0.10, which
is the result of taking 20% (edge weight) of module y’s score at iteration 0.
Module y remains with the same score since it does not have any outgoing edges.
Convergence is already reached at iteration 2 (Fig.2c) because the BACRank
values did not change with respect to the previous iteration.

X X X
BACRank),...0:2 BACRank),...0.2 BACRank),...0:2
=0.35 =0.45 =0.45

(a) Iteration 0. (b) Iteration 1. (c) Iteration 2.

Fig. 2. Simple execution example of the BACRank algorithm.
In what follows, we formally prove the requirements from Sect. 4.2. For the
sake of brevity, in the proofs we refer to BACRank simply as BR.

Proof of requirement 1. Let my, my be two active modules such that:
m1 = mg (0(my,t) > d(mae,t)) (9)

Then the following holds for any iteration ¢ > 0:

BR(m1, ;i) > 6(ma,t) + »_ BR(n,1;4) - w(€my,n) (by (9))
neENT (mq)

= d(ma,t) + Z BR(n,t;1) - w(emy,n) (by equiv. prop. (1))
neNT (mg)

= d(ma,t) + Z BR(n,t;1) - w(emsy,n) = BR(ma2, ;1) (by equiv. prop. (3))
neENT (my)

Proof of requirement 2. Let mi, my be two active modules such that:

m1 =e mz (3n1 € NT(m1),n2 € NT(msa) : NT(m1) \ {n1} = NT(m2) \ {n2}A
w(emy ny) = w(emy.ny) ABR(n1, ;4) > BR(n2, ;1)) (10)
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Then the following holds for any iteration ¢ > 0:

BR(ma1, t;i) > 6(m1,t) + Z BR(n,t;1) - w(emy,n) + BR(n2,t;%) - w(emsy,ny) (by (10))
neNt(mi)\{n1}
=§(m1,t) + Z BR(n,t;1) - w(emg,n) (by (10) and equiv. prop. (3))
neNT (mg)
= §(ma,t) + Z BR(n,t;1) - w(emsy,n) = BR(ma2, ;1) (by equiv. prop. (5))
neENT (my)

Proof of requirement 3. Let m1, ms be two active modules such that:
m1 = ma (3 € NT(my) = Nt(m2) : wlem, n) > w(€myn)) (11)

Then the following holds for any iteration ¢ > 0:

BR(my, t;i) > §(ma,t) + Z BR(n, t;7) - w(€my,n) + BR(n', ;1) - wlen, o) (by (11))
neNt(mi)\{n'}
=d(ma,t) + Z BR(n,t;1) - w(emy,n) (by equiv. prop. (1))
neNt(mz)
= d(ma,t) + Z BR(n,t;1) - w(ems,n) = BR(ma2, ;1) (by equiv. prop. (5))
neNTt(m2)

5 Experimental Evaluation

Environment Description. We executed BACRank on the BACS of a
5-story office building on an international university campus, hosting about 375
employees in 252 rooms. The local building manager provided assistance with
the required technical information. We identified 12 business processes that take
place in this building, some of them running only at specific periods of the year.
The BIA revealed the corresponding scores as presented in Table 2.

The core BACS is implemented using the BACnet protocol [2]. The BACnet
system controls the heating, ventilation, cooling, and lighting services. Other
building services, such as physical access control, are implemented with different
protocols and tools we did not have access to. We consider here only the building
services implemented in BACnet.

The BACnet system is comprised of 160 software modules running in 5
multi-purpose controllers (BACnet profile B-BC) and 28 application-specific con-
trollers (BACnet profile B-ASC). Figure 3 shows the software modules depen-
dency graph where 22 vertices are isolated and the remaining 138 are connected
in the main subgraph. Vertex colors indicate the device they run in. Red modules
are part of the heating controller, whereas blue modules are part of the cool-
ing controller. The lighting system is controlled by the yellow modules. Green
modules run in a controller in charge of multiple services (ventilation, heating,
and cooling) throughout the building. Purple modules also implement multiple
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services but in one specific location of the building. Finally, each gray mod-
ule represents one application-specific controller running exactly one software
module (thermostats).

Results. We used weekly time resolution in our experiments based on the activ-
ity of the business processes and software modules analyzed. This implies that
a new ranking has to be computed every week of the year to take into account
business processes that start or stop execution, and software modules that might
or not be needed (e.g., due to changes in climate conditions). For each week,
BACRank is executed a number of iterations until the scores’ convergence is
reached. Figure4 shows the quick convergence of BACRank on the real BACS
graph. After the tenth iteration, on average, the difference between two consec-
utive scores (€) is smaller than 0.0006. After 60 iterations ¢ = 0. To run our
evaluation we defined an € < 1079, which implies that 20 iterations are needed.

Table 2. Business Processes (BPs) and their corresponding BIA scores.

N2 | Business Process Score | N2 | Business Process Score
1 | Research .63 7 | Introduction week .60
2 | Application/admission 27 8 | Administrative support A7
3 | Accounting .60 9 | Education advisory .53
4 | Technical support 43 10 | Marketing & communication | .43
5 | Courses and others (periodic) .73 11 | Catering 1.0
6 | Trainings and others (non-periodic) | .70 |12 | Student associations .50

Fig. 3. Real software modules dependency graph. (Color figure online)
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Figure 5a illustrates the 52 rankings obtained throughout the year, where
each colored line represents a software module (following the same color scheme
used in Fig. 3). The vertical axis represents the ranking position where top ranked
modules start at position 1. Modules with identical scores in Fig. 5a are randomly
assigned a slot next to their analogous. Figure 5b on the other hand, shows the
actual BACRank score for each module. The impression of having fewer lines in
Fig.5b than in Fig.5a is due to multiple overlapping lines (i.e., modules with
identical score).

BACRank successfully identifies software modules that are part of relevant
business processes, and are required by other relevant modules in the infrastruc-
ture. Throughout the experiments, module “Multi-purpose Substation” (vertex
A in Fig. 3) was considered the most important because, among others, it sup-
ports the most important business process according to the BIA (BPi;) and
it provides information required by 19 other important modules in 7 different
devices. Vertex A is depicted as an horizontal green line at the top of Fig.5a
and b.

At the bottom of the ranking there is a set of approximately 30 mod-
ules consistently low ranked. Some of them, starting from the last one—
“AirExtraction”—and ascending with “Electricitymeter Experiments”, “Cool-
Section [sect. numbers 1-4]_Log”, are shown in Fig.3 as Z, Y, X, W, V, and U,
respectively. There are two aspects that justify their poor scoring performance.
First, a vertex with out-degree of 0 is likely to be low ranked because an impor-
tant source of BACRank score comes from other vertices that depend on the
module in question. Second, if no other modules depend on it, its BACRank
score comes exclusively from the initial score which is, in turn, based on the
related business processes and the module’s support to them. If there are no
related business processes, as in the case of safety oriented modules; or the mod-
ule’s participation in the business processes is marginal, then the module in
question will get a low BACRank score.
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Fig. 4. BACRank scores convergence.
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Time-independent software modules are typically ranked in similar positions
throughout the year. Figure 5a shows that lighting and thermostat modules (yel-
low and gray lines) are good examples of time-independent modules. Their minor
shifts up and down respond mostly to score variations in other modules rather
than their own scores.

Time-dependent modules, on the other hand, are visible in Fig. 5a between
weeks 14 and 39 of the year. This represents roughly the period between April
and September, that is warmer than the range between October and March, tak-
ing into account the geographical location of the building. Figure 5a shows that
most cooling modules increase their rank in this period whereas some heating
modules suffer a substantial decrease (blue vs. red lines). Heating modules that
remain similar or even increase their rank in the April-September period are
benefited from neighboring cooling modules that got their rank increased. For
example, heating modules “Radiatorgroup South” and “Radiatorgroup North”
in positions 15 and 16 in Weeks 1-13, climbed to positions 9 and 10 in Weeks
14-39. These two modules are labeled as B and C in Fig. 3, which shows their
proximity to cooling modules. Exactly 4 cooling modules—D, E; F, G—depend
on B and C.

Weeks 32-35 of the year (August) are part of the organization’s summer
break in which some of the business processes stop execution. Student-related
processes (BPs and BPj3) do not run in this period, and therefore, the related
software modules lower their ranking positions. Module “AHU WestLectRoom”,
for example, decreases its rank from position 13 in week 31 to position 34 in
week 32. The main reason for its descend is its support to the halted BPs. This
module is labeled with the letter H in Fig. 3.

In weeks 40-51 all software modules rank in the same order they ranked at
the start of the year, due to identical conditions in terms of business processes
running and software modules needed. Week 40 marks the start of the winter
period in which cooling modules decrease their relevance in favor of heating
modules as shown in Fig. 5a and b.

Finally, in week 52 the organization is closed and no business processes are
running in this building. As explained before, Fig. 5a will simply assign an arbi-
trary order to equally ranked modules, whereas Fig. 5b shows that all the mod-
ules get a score of 0 which means that from the business continuity viewpoint
all modules are “equally unimportant”.

6 Conclusion

We have presented the first BACS impact assessment methodology that is
focused on business continuity. Our approach takes into account business and
technical aspects from diverse information sources. The proposed methodology
scores BACS software modules considering their support to the related business
processes and their relevance to other neighboring modules.

Since software modules constitute a dependency graph, our methodology to
score modules is modeled as a graph centrality measure. We formally defined the
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general requirements that such centrality measure must satisfy to give scores that
reflect the modules’ relevance in the BACS infrastructure. Finally, we developed
one instance of such centrality measure, which we called BACRank. We formally
proved that BACRank satisfies the defined general requirements and evaluated
it in a real BACS. The evaluation showed that BACRank successfully priori-
tizes the most relevant software modules with respect to the business continuity
perspective.

Our comprehensive scoring methodology provides valuable insights about the
BACS infrastructure typically overlooked by building administrators. Module
dependencies, for example, might organically grow as the BACS evolves to the
point in which administrators are no longer fully aware of the role they play and
their overall impact in case of failures or active attacks.
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